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I. Introduction

Vitamin A (retinol) and its naturally occurring and
synthetic derivatives, collectively referred to as retin-
oids, exert a wide variety of profound effects in embry-
ogenesis, reproduction, vision, and regulation of inflam-
mation, growth, and differentiation of normal and
neoplastic cells in vertebrates (Sporn et al., 1994; Blom-
hoff, 1994; Becherel et al., 1994).

Vitamin A was first reported to be an essential nutri-
ent (“fat soluble A”) in the beginning of this century
(Drummond, 1920). The importance of retinoids in der-
matology dates back to Wolbach and Howe in 1925, who
identified epidermal changes as abnormal keratiniza-
tion in vitamin A-deficient animals (Wolbach and Howe,
1925). These observations were followed by numerous
studies focused on the metabolism and pharmacological
action of retinoids in the skin leading to the establish-

ment of retinoic acid treatment for various skin diseases
(Stuettgen, 1962; Baer, 1962; Frost and Weinstein,
1969; Fredriksson, 1971; Schumacher and Stüttgen,
1971; Günther, 1973; Runne et al., 1973). Up to now, far
more than 5000 retinoic acid analogs have been synthe-
sized, out of which the next three generations have been
established for systemic and topical treatment of various
skin disorders: first, the nonaromatic retinoids b-caro-
tene (provitamin A), all-trans-retinoic acid (RA)

b

(treti-
noin), and 13-cis-RA (isotretinoin); second, the monoaro-
matic retinoid derivatives trimethyl-methoxyphenyl
analog of RA (etretinate) and 9-(4-methoxy-2,3,6-trim-

aAddress for correspondence: Thomas C. Roos, Laboratories
for Experimental Dermatology, Retinoid and Vitamin D Metabo-
lism, 2-36-3 Department of Dermatology, University Clinic of the
RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany. E-mail:
tcroos@imib.rwth-aachen.de.

b Abbreviations: ADH, alcohol dehydrogenase; AhR, arylhydrocar-
bon receptor; ALDH, aldehyde dehydrogenase (RalDH); AP1, activa-
tor protein 1; cDNA, complementary deoxyribonucleic acid; CRBP,
cellular retinol binding protein (apo- and holo); CRABP, cellular
retinoic acid binding protein (apo- and holo); CYP, cytochrome P450-
isoenzymes; LRAT, lectin:retinol acyltransferase; mRNA, messenger
ribonucleic acid; NAD, nicotinamide adenine dinucleotide; RA, reti-
noic acid; RAL, retinal; RalDH, retinal dehydrogenase; RAR, retinoic
acid receptor; RBP, retinol binding protein; RE, retinylesters; REH,
retinylester hydrolase; ROL, retinol; RolDH, retinol dehydrogenase;
RXR, retinoid X receptor; RXRE, retinoid X responsive element;
SDR, short-chain dehydrogenase/reductase.
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ethylphenyl)-3–2,4,6,8-nonatetraenoic acid (acitretin);
and third, the polyaromatic retinoid derivatives tazaro-
tenic acid and 6-[3-(1-adamantyl)-4-methoxy-phenyl]-2-
naphthoic acid (adapalene) (see fig. 1) (Orfanos et al.,
1987, 1997; Shalita et al., 1996).

Retinoids mediate their biological effects through
binding to nuclear receptors known as RA receptors
(RARs) and retinoid X receptors (RXRs), which belong to
the superfamily of ligand-inducible transcriptional reg-
ulators that include steroid hormone receptors, thyroid
hormone receptors, and vitamin D3 receptors (reviewed
in: Giguere, 1994; Mangelsdorf et al., 1994; Chambon,
1996). RARs and RXRs act via polymorphic cis-acting
responsive elements, the RA responsive elements
(RAREs), and retinoid X responsive elements (RXREs),
present in the promoters of retinoid-responsive genes
(Giguere, 1994; Mangelsdorf et al., 1995; Gronemeyer
and Laudet, 1996). The functional interactions of retin-
oid receptors in the skin were reviewed by Fisher and
Voorhees (1996) and Chambon (1996).

Although all-trans- and 9-cis-RA are only minor me-
tabolites of retinol (ROL) and b-carotene, they display
100- to 1000-fold higher biological activity (Breitman et
al., 1980; Strickland and Mahdavi, 1978). Whereas all-
trans-RA binds only to RARs, 9-cis-RA binds both RARs
and RXRs. The stereoisomer of all-trans-RA, 13-cis-RA,
exhibits a much lower affinity for RARs and RXRs and
exerts its molecular effects mostly through its isomer-
ization into all-trans-RA (Allenby et al., 1993).

Retinoids display key regulatory functions in epider-
mal growth and differentiation but the cellular, immu-
nologic, and biochemical alterations associated with
them are not understood completely (Fisher et al., 1991;
Fisher and Voorhees, 1996). Furthermore, the metabolic
pathways of retinoids operative in skin physiology and
pharmacotherapy remain to be defined.

In this review, the metabolic pathways of retinoids in
skin are reviewed focusing on the following subjects:

1. The enzymes and binding proteins that mainly are
involved in the activation, modulation, and cleav-
age of retinoids in human skin. The involvement of
these enzymes/binding proteins in the pathogene-
sis of skin disorders, especially malignancies and
disorders of keratinization, will be emphasized.

2. The xenobiotics that are capable of modulating the
steady-state of tissue retinoid concentrations, and
their impact on the enzyme systems that regulate
the metabolic pathways of retinoids. Here, the
“check points” in the metabolic pathway of retin-
oids whereby xenobiotics can influence these
agents are of major interest with regard to clinical
retinoid therapy.

II. Absorption, Transport, and Storage

Major sources of natural retinoids are animal fats,
fish liver oil (retinylesters), and yellow and green vege-

tables (carotenoids) (fig. 2). Ingested retinylesters (RE)
are hydrolyzed to ROL by enteral hydrolases in the
intestine. ROL and carotenoids are absorbed by intesti-
nal mucosa cells. Of the carotenoids, b-carotene is the
most potent ROL precursor, yet it is six-fold less effec-
tive than preformed ROL, which results from incomplete
resorption and conversion (One ROL equivalent is equal
to 1 mg of ROL, 6 mg of b-carotene, or 12 mg of mixed
carotenoids) (Blomhoff et al., 1971).

After intestinal absorption, retinoid production from
carotenoids can occur by two pathways: First, retinal
(RAL) can be synthesized by oxidative cleavage of the
central double bond followed by reduction to ROL by a
microsomal retinal reductase (Kakkad and Ong, 1988).
Here, the cellular retinol binding protein-II (CRBP-II)
protects RAL from oxidation into RA. Second, apo-caro-
tenoids are formed through excentric cleavage followed
by transformation of the apo-carotenoid acids into RAs
(Wang et al., 1991).

In the intestinal cell, ROL also forms complexes with
CRBP-II. This ROL-CRBP-II complex serves as sub-
strate for the esterification of ROL to RE by a lecithin:
retinol acyltransferase (LRAT) (MacDonald and Ong,
1988) with long-chain fatty acids, which are incorpo-
rated by chylomicrons (Bloomhoff et al., 1990). The fatty
acids reach the general circulation where they undergo
several biochemical changes via the lymph RE-chylomi-
cron complexes. This leads to the formation of several
chylomicron remnants, which in turn are cleared pri-
marily by the liver, although extrahepatic chylomicron
uptake has been shown also in bone marrow and spleen,
and to a lesser degree in testes, lungs, kidneys, fat, and
skeletal muscle (Blomhoff, 1994; Blomhoff et al., 1991).

In the parenchymal hepatocytes, chylomicron-RE
complexes are hydrolyzed and free ROL binds to retinol
binding protein (RBP), its serum transport protein. Ex-
cess ROL undergoes a paracrinic transfer from the hepa-
tocytes to the perisinusoidal stellate cells, called vitamin
A storage or Ito cells, for storage (Hirosawa and Yamada,
1973). Approximately 50 to 80% of the total body vita-
min A in humans is stored in the stellate cells in the
liver in the form of REs. Depending on their lipophilic
character, exogenous and endogenous RA derivatives
accumulate in the human body with highly variable
elimination half-lives. This has to be considered espe-
cially for the use of synthetic RA derivatives in clinical
therapy (Chien et al., 1992). To maintain constant phys-
iological ROL concentrations in the plasma of approxi-
mately 2 mmol/L, ROL can be released from the stellate
cells. The RA concentration in the plasma and other
body fluids is approximately 100-fold lower (7 to 14
nmol/L) (Napoli et al., 1985; De Leenheer et al., 1982;
Tang and Russel, 1990; Eckhoff and Nau, 1990).

ROL-RBP complexes released from the liver bind to
transthyretin, a serum protein named for its ability to
bind and transport simultaneously but independently
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FIG. 1. Indications and mode of administration of commercially available retinoids in dermatological therapy.
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from both the thyroid hormone and the ROL-RBP com-
plex (Blomhoff et al., 1991).

The plasma carrier of ROL, RBP, as well as the
plasma carrier of RA, albumin, are present in the inter-
cellular spaces of the epidermis (Vahlquist et al., 1997;
Rabilloud et al., 1988). In human skin, besides ROL,
b-carotene, RE, 3,4-didehydro-retinoids, RAL, all-trans-
RA, and some of their metabolites have been identified
in vitro and in vivo (Vahlquist, 1982; Vahlquist et al.,
1982). Cultured epidermal keratinocytes maintained in
medium containing a physiological concentration of ROL
exhibit a retinoid composition that is similar to intact
epidermis (Randolph and Simon, 1993).

As of today, the mechanisms of ROL uptake by target
cells are not understood completely. Several possibilities
have been proposed: RBP receptor-mediated uptake,
nonspecific spontaneous transfer of ROL and RA, and
fluid phase endocytosis (Heller, 1975; Rask and Peter-
son, 1976; Bavic et al., 1991; Dew and Ong, 1995). Orally
administered all-trans-RA, 13-cis-RA, and etretinate
undergo first-pass absorption directly into the portal
blood and circulate in the plasma, mainly bound to al-
bumin. The uptake of these retinoids by target cells is
regulated by unknown factors. Similarly, neither the
mechanism of transcutaneous absorption of topical reti-
noids nor their transfer into target cells is well under-
stood.

Topically applied all-trans-RA is isomerized partially
to 9-cis-RA, 13-cis-RA, and other metabolites within the
epidermis (Lehmann and Malany, 1989). Approximately
80% of the all-trans-RA applied remains on the skin
surface, whereas its penetration through the stratum
corneum and the hair follicle is vehicle-dependent (Leh-

mann et al., 1988). After the initial diffusion into the
stratum corneum that occurs within a few minutes, fur-
ther diffusion into epidermis and dermis proceeds more
slowly (Schaefer, 1993; Tavakkol et al., 1994). Our find-
ings have shown that topically applied all-trans-RA and
13-cis-RA poorly penetrates into or through the skin:
gel-based formulations tend to trap the drug and the RA
remains on the surface, whereas cream formulations
enhance penetration to a small extent (less than 5% of
the applied amount within 30 min). On the other hand,
13-cis-RA penetrates rapidly into normal human kera-
tinocytes in vitro (unpublished data).

FIG. 2. Retinoid absorption, transport, and storage. B-C, b-carote-
noids, CM-RE, chylomicron-RE complexes; RBP-ROL, RPB-ROL com-
plexes; TTR, transthyretine.

FIG. 1. Continued.
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The storage of ROL in human skin occurs through
esterification of ROL into RE (Kang et al., 1995). Skin
cells contain transferases, LRAT and acyl CoA:acyl-
transferase (ARAT). These two enzymes catalyze RE
synthesis (Torma and Vahlquist, 1987; Kurlandsky et
al., 1996) (table 1). The hydrolysis of RE to ROL is
regulated by a specific RE hydrolase. In cultured kera-
tinocytes, LRAT activity is inducible by retinoids after
12 h incubation (Kurlandsky et al., 1996). Simulta-
neously, biosynthesis of all-trans-RA is reduced,
whereas inhibition of LRAT by phenylmethylsulfonyl
fluoride restores all-trans-RA synthesis. The regulation
of LRAT activity provides a mechanism of autoregula-
tion of RA synthesis through feedback regulation of sub-
strate availability. The esterifying activity in human
skin in vivo is four-fold greater, on a per cell basis, in
keratinocytes in the basal layer of the epidermis than in
keratinocytes in the upper layers (Kurlandsky et al.,
1996), suggesting that retinoid levels are higher in the
lower epidermis, which is closer to the perfusate from
capillaries in the dermis. Furthermore, this implies that
more REs are stored in the lower than in the upper
epidermal keratinocyte layers. During migration from
the lower to the upper cell layers, these stored REs may
provide keratinocytes with a source of ROL and thus, a
source of RA, which maturing keratinocytes are able to
synthesize from ROL (Siegenthaler et al., 1990a). Hu-
man keratinocytes incubated with all-trans-RA exhibit
time- and concentration-dependent increases in RE
mass, increases in the rate of RE synthesis, and de-
creases in RE utilization (Randolph and Simon, 1996).
This clearly demonstrates that keratinocytes respond to
exogenous RA by initiating feedback inhibition of endog-
enous production of active retinoids, sequestering extra-
cellular substrate ROL as RE, and decreasing RE utili-
zation. How these reactions are mediated, and to what
extent nuclear retinoid receptors are involved, is not
understood completely, but it is obvious that the steady-
state system of intracellular retinoids is regulated by a
complex feedback control system involving retinoids,
several enzymes, and retinoid binding proteins.

III. Retinoid Biosynthesis

Whereas extensive and elegant work has been per-
formed on the family of retinoid receptors, a relatively
large gap exists in the knowledge of how ROL is metab-
olized to form active ligands.

Because ROL produces changes in skin, in vivo, sim-
ilar to those produced by RA but without measurable
levels of RA or irritation, ROL generally is considered a
prohormone of RA, implying that ROL-induced re-
sponses in human keratinocytes are mediated by its
tightly regulated conversion to RA (Kang et al., 1995).
These responses include increased epidermal thickening
because of increased keratinocyte proliferation, expan-
sion of intercellular spaces, compaction of the epidermal
barrier, and induction of CRBP, CRABP-II, and RA
4-hydroxylase activity. From these findings it is possible
that ROL may be a more efficient and natural way to
deliver RA to the correct subcellular location within skin
cells than direct treatment with RA (Fisher et al., 1991).
In support of this, it has been shown that ROL and also
REs must be converted to RA to exhibit biological activ-
ity in human keratinocytes, in vitro (Kurlandsky et al.,
1994; Chen et al., 1995a). Because of a tight enzymatic
regulation of the conversion of ROL and RAL to RA,
all-trans-RA is minimally detectable in untreated and
ROL-treated human skin (Kang et al., 1995). Very low
levels of RA apparently are required to function as li-
gands to bind and activate nuclear RARs and RXRs (for
review see Giguere, 1994), and the RA that is formed
from ROL is hydroxylated rapidly by RA 4-hydroxylase
to the metabolites 4-OH-RA and 4-oxo-RA, which exhibit
a much lower retinoid receptor binding affinity (see Sec-
tion V.A.).

Numerous enzymes involved in retinoid metabolism
have been identified. These enzymes are members of
four distinct families: Alcohol/ROL dehydrogenase
(ADH/RolDH), short-chain dehydrogenase/reductase
(SDR), aldehyde/RAL dehydrogenase (ALDH/RalDH),
and several cytochrome P450-isoenzymes.

A. Alcohol/Retinol Dehydrogenases and Short-Chain
Dehydrogenases/Reductases

The conversion of ROL to RA consists of a two-step
process: First, members of the alcohol dehydrogenase
(ADH I, II, and IV) (Boleda et al., 1993; Yang et al., 1994;
Kedishvili et al., 1995) and short-chain dehydrogenase/
reductase enzyme families (SDR) catalyze the reversible
interconversion of ROL and RAL, the rate-limiting step
(Kim et al., 1992; Blaner and Olson, 1994; Chen et al.,
1995c) (fig. 3, table 1). These ADH-isoforms metabolize
all-trans-, 9-cis-, and 13-cis-retinoid isomers with re-
duced nicotinamide adenine dinucleotide (NAD) as co-

TABLE 1
The reversible retinol/retinal interconversion

Enzyme Locus Reaction Binding protein/function

Lecitin:retinol-acyltransferase (LRAT) Microsomes Retinol 3 retinyl esters Holo-CRBP-retinol/substrate,
Apo-CRBP/inhibitor

Retinyl ester hydrolase (REH) Microsomes Retinyl esters 3 retinol Apo-CRBP/activator
Alcohol dehydrogenase classes I, II, IV, and VII (RolDH) Microsomes

Cytosol
Retinol 3 retinal Holo-CRBP-retinol/substrate,

Apo-CRBP/inhibitor
Short-Chain dehydrogenase/reductase, microsomal retinol

dehydrogenase types I, II, and III
Microsomes Retinol 3 retinal Holo-CRBP-retinal/substrate

RETINOID METABOLISM IN THE SKIN 319
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enzyme, whereas the SDRs use all-trans-ROL and all-
trans-RAL, either free or bound to CRBP-I with reduced
NAD phosphate as phosphorylated coenzyme, but are
unable to oxidize 9-cis-ROL or 13-cis-ROL (Boerman and
Napoli, 1995). Similar ADH enzymes metabolizing ROL
into RAL were identified in differentiating keratinocytes
(Siegenthaler et al., 1990a) and other cell types (Posch et
al., 1992; Tsujita et al., 1994; Chen et al., 1994) in vitro,
as well as in human psoriatic epidermis and at very low
levels in normal human skin (Siegenthaler et al., 1990b).

Recent studies have revealed that mammalian ADH is
part of a complex enzyme family composed of seven
evolutionarily conserved classes, each with unique prop-
erties and sites of gene expression (Jörnvall et al., 1995;
Duester et al., 1995). In mouse skin, the enzyme cata-
lyzing ROL oxidation has been identified as an isoen-
zyme of ADH class IV (Connor et al., 1987; Zgombic-
Knight et al., 1995). To what extent the other ADH
classes are active in retinoid metabolism in murine and
human skin is unknown.

Three forms of rat liver microsomal ROL dehydroge-
nases (ROLDH, types I, II, and III) revealed sequence
homology with members of the SDR family (fig. 3, table

1). The ADH and SDR enzyme families are related evo-
lutionarily, sharing similar coenzyme binding domains,
but differ in that ADH has a greater subunit molecular
weight and is zinc-dependent, whereas SDR has a
shorter subunit and no metal requirement (Persson et
al., 1995). Whether these SDRs are involved in retinoid
metabolism in human skin has not yet been determined.

B. Aldehyde/Retinal Dehydrogenases and Cytochrome
P450

In the second step, members of the aldehyde/RAL
dehydrogenases (ALDH/RalDH) and cytochrome P450-
isoenzyme families (CYP) catalyze the irreversible oxi-
dation of RAL into RA (Duester, 1996) (fig. 3, table 2).
This explains why the administration of RA to vitamin
A-deficient animals results in no increase in ROL and
RAL production needed for retinoid storage nor does it
induce the production of the visual pigment 11-cis-reti-
nal (Dowling and Wald, 1960, 1982). In mouse epidermis
topical RAL is transformed into all-trans-RA and exerts
biological activity in vivo as measured by messenger
ribonucleic acid (mRNA) levels of filaggrin and loricrin
(Didierjean et al., 1996). Out of three characterized
classes, class I ALDH showed the highest activity for the
oxidation of all-trans-RAL and 9-cis-RAL to the corre-
sponding RA isomers (Lee et al., 1991; Roberts et al.,
1992; Labrecque et al., 1995). Whether this is also true
for human skin is unknown.

Whereas some members of the CYP superfamily are
involved in RA synthesis, they seem to be much more
important for the catabolism of active retinoid ligands,
as discussed below (fig. 3, table 2). Several CYP-isoen-
zymes derived from rabbit liver catalyze the oxidation of
RAL to RA (Roberts et al., 1993; Tomita et al., 1993;
Raner et al., 1995). Here, the most important CYP-isoen-
zymes in human skin apparently are CYP1A1 and
CYP1A2, which are both able to oxidize all-trans- and
9-cis-RAL into the corresponding RA isomers (Roberts et
al., 1992; Raner et al., 1995). Furthermore, the basal
expression of CYP1A2 and 1A1 can be inhibited by RA in
human epidermis (Li et al., 1995), which suggests feed-
back inhibition by one of the products of these enzymes.

FIG. 3. Storage and metabolism of retinol in the target cell. SDH,
short-chain dehydrogenase.

TABLE 2
The irreversible oxidation of retinal to retinoic acid

Enzyme Locus Reaction Binding protein/function

Aldehyde dehydrogenases class I (RalDH) Cytosol Retinal 3 retinoic acid Holo-CRBP-retinal/substrate
Cytochrome P450-isoenzymes Microsomes

CYP1A1 Retinal 3 retinoic acid Holo-CRBP-retinal/substrate
CYP1A1 Retinal 3 4-OH-retinal
CYP3A6
CYP1A2 9-cis-Retinal

3 4-OH-9-cis-retinal
3 4-oxo-9-cis-retinal

CYP1A2 9-cis-Retinal
3 9-cis-retinoic acid

CYP2B4, CYP2C3 9-cis-RAL
3 4-OH-retinal
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The synthesis of RA does not require ROL as a sub-
strate (Napoli and Race, 1988). Because the cleavage of
b-carotene involves RAL as an intermediate product, it
can function as an alternative precursor for RA in epi-
dermal cells and several other tissues (fig. 4) (Vahlquist,
1982; Vahlquist et al., 1982; Lakshman et al., 1989;
Krinsky et al., 1993).

Although 9-cis-RA is known as a ligand for RXRs and
RARs, the pathway of its synthesis has not been deter-
mined completely. Evidence exists that it arises from
nonenzymatic isomerization of all-trans-RA (El Akawi
and Napoli, 1994). Other naturally occurring 9-cis-reti-
noid derivatives such as 9-cis-ROL or 9-cis-b-carotene,
which have been identified in several tissues, also could
function as precursors of 9-cis-RA (fig. 5) (Stahl et al.,
1993). In rat liver, high 9-cis-ROL dehydrogenase activ-
ity has been observed (Napoli, 1996), and the major RAL
dehydrogenase equally efficiently converts all-trans-
RAL and 9-cis-RAL into their respective acids, whereas
it discriminates against 13-cis-RAL (Giguère, 1994).
This 9-cis-RAL dehydrogenase could convert 9-cis-RAL,
which is produced from dietary 9-cis-ROL or from 9-cis-
b-carotene, into 9-cis-RA. Because the mechanism of
all-trans- to 11-cis-isomerization is comparable with all-
trans- to 9-cis-isomerization, 9-cis-RA also could origi-
nate from the generation of 9-cis-ROL from RE, as ob-
served with 11-cis-ROL (Cañada et al., 1990). In human
plasma, 9-cis-RA is converted rapidly but reversibly into
9,13-cis-RA (Horst et al., 1995). Recently, we showed
that this RA derivative is present in human epidermal
keratinocytes and fibroblasts, in vitro (unpublished
data). However, the function of 9,13-cis-RA has yet to be
determined. This interconversion may represent a
mechanism for 9-cis-RA clearance, or similarly to the
13-cis-/all-trans-RA interconversion, for a circulating
less toxic derivative of 9-cis-RA as a depot for later use
(Napoli, 1996).

Little is known about the isomerization of retinoids,
although this reaction apparently is of great importance
for the maintainance of appropriate intracellular levels
of active RA. The cis-isomers of all-trans-ROL, all-trans-
RAL, and all-trans-RA may be produced by nonenzy-

matic isomerizations (El Akawi and Napoli, 1994;
Kojima et al., 1994; Urbach and Rando, 1994), by cyto-
chrome P450-isoenzymes modifying the b-ionone ring,
or by other yet unknown enzymatic conversions. The
all-trans- to 9-cis-isomerization, generating the major
ligand for the RXRs, occurs not only among RA isomers
but also from all-trans-RAL to 9-cis-RAL, driven by a
specific ADH (Labrecque et al., 1995). Remarkably,
9-cis-RA levels in human skin are much lower than
all-trans-RA, and 9-cis-RA applied topically to human
skin is isomerized rapidly to all-trans-RA (Duell et al.,
1996a), suggesting the existence of an isomerase that
preferentially produces all-trans-RA. Alternatively,
9-cis-RA is formed from 9-cis-b-carotene (Nagao and Ol-
son, 1994; Wang et al., 1994). The physiological signifi-
cance of this reaction is unknown.

We observed that 13-cis-RA spontaneously isomerizes
to all-trans-RA very rapidly in cell-free medium (an
equal ratio was reached in less than 24 h), and a ratio of
1:2.1 after 54 h was measured. In human keratinocytes
in vitro this isomerization is slowed (the equal ratio was
reached within 36 h), and the ratio after 54 h is still less
than 1:1.7. Using all-trans-RA as the substrate for these
isomerization studies, only small amounts of 13-cis-RA
are converted from all-trans-RA, indicating that all-
trans-RA is the most stable isomer. 9-cis-RA is converted
rapidly into 13-cis- and all-trans-RA in human keratin-
ocytes in vitro. These observations suggest the existence
of an enzyme regulating the interconversion of these
three isoforms of RA in human keratinocytes (Jugert et
al., unpublished results). Investigation is underway to
test this hypothesis.

In addition to several RA derivatives, human epider-
mis also produces 14-OH-4,14-retro-ROL (Duell et al.,FIG. 4. Metabolism of b-carotene in the target cell.

FIG. 5. Intracellular pathways of retinoid metabolism. at-RA, all-
trans-RA.
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1996b), which first was shown to be biologically active in
B lymphocytes, where it substitutes for ROL in main-
taining cell growth in culture (Buck et al., 1991). The
role of this retinoid in human skin is not clear. Similarly,
the functional significance of other vitamin A deriva-
tives, 3,4-didehydro-ROL (vitamin A2) (Vahlquist,
1980), 9,13-cis-RA (Horst et al., 1995) and 3,4-didehy-
dro-RA, which are synthesized in human keratinocytes,
is unknown (Randolph and Simon, 1993). The finding
that topical treatment with RA decreases the concentra-
tion of 3,4-didehydro-retinoids in skin suggests that
these metabolites may function as a retinoid storage
form (Randolph, 1996). Thaller and Eichele (1990) spec-
ulated that 3,4-didehydro-RA may function as an endog-
enous morphogen, which is as important as all-trans-
RA.

Besides this complex and not yet completely charac-
terized enzyme system, several retinoid binding proteins
interacting with both the substrates and the enzymes
are also very important regulators of intracellular reti-
noid metabolism.

IV. Retinoid Binding Proteins

Within the cytoplasm, ROL and RA are bound to spe-
cific cellular binding proteins, CRBP-I and -II and
CRABP-I and -II, respectively. These proteins are in-
volved in the regulation of the intracellular concentra-
tion of ROL, RAL, and RA by acting as both storage or
shuttle proteins in retinoid metabolism, and maintain
constant cell-specific levels of free ROL and RA (fig. 3,
tables 1–3). The concentrations of both CRBP-I/II and
CRABP-I/II exceed those of their ligands (Harrisson et
al., 1987; Donovan et al., 1995) and exhibit affinities for
their ligands which are much higher than many en-
zymes for their substrates (Li et al., 1991; Norris et al.,
1994).

A. Cellular Retinoid Binding Proteins-I and -II

CRBPs facilitate the uptake of ROL and present it to
LRAT for storage as REs (Ong, 1994) (table 1). Further,
they prevent ROL from spontaneous nonenzymatic
isomerization and oxidation, which occur rapidly in the
absence of CRBP (Napoli et al., 1995). ROL bound to
CRBP-I (holo-CRBP) is a substrate for conversion to RA
(Posch et al., 1992; Ottonello et al., 1993; Boerman et al.,
1995), and unbound CRBP (apo-CRBP) inhibits LRAT

(Ong, 1994) (table 1). Thus, the ratio of apo- to holo-
CRBP participates in regulation of the balance between
oxidation and esterification of ROL (Napoli, 1993). The
activity of microsomal ROL dehydrogenase (SDRs) with
all-trans-ROL (as ROL dehydrogenase) or with all-
trans-RAL (as RAL reductase) is stimulated in both
cases by CRBP-I, facilitating the conversion of ROL to
RE as shown in human liver (Yost et al., 1988).

The expression of CRBP is up-regulated by both RA
and ROL in several tissues, including human skin (Es-
kild et al., 1988; Rush et al., 1991; Ong et al., 1994), and
it has been suggested that this is caused by the conver-
sion of ROL to all-trans-RA (Kurlandsky et al., 1994),
indicating that this induction of CRBP gene transcrip-
tion by all-trans-RA is a negative feedback regulatory
mechanism of RA synthesis (Smith et al., 1991; Man-
gelsdorf et al., 1991; Wang et al., 1993; Ong et al., 1994),
which decreases the levels of free ROL, and thus inhibits
the conversion of ROL to RA.

B. Cellular Retinoic Acid Binding Proteins-I and -II

The intracellular levels of CRABP-I protein are simi-
lar in dermis and epidermis, whereas CRABP-II levels
are much higher in the epidermis (Siegenthaler et al.,
1984; 1992b). Furthermore, CRABP-II is up-regulated
by treatment with ROL (Kang et al., 1995), all-trans-RA
and its analogs (Astrom et al., 1991; Elder et al., 1992),
especially in differentiating keratinocytes. These find-
ings have led to the use of the CRABP-II response to
retinoid administration in fibroblasts in vitro as a repro-
ducible measure of retinoid bioactivity that may predict
human skin responses (Elder et al., 1996). The sources of
CRABP-II in human skin are keratinocytes and fibro-
blasts, whereas the source of CRABP-I in human skin is
primarily melanocytes (Sanquer and Gilchrest, 1994).
Basal CRABP-I expression is much lower than that of
CRABP-II.

CRABP-I and -II display variable RA binding affini-
ties, regulated by a RA-responsive element in their pro-
moters (Darmon and Blumenberg, 1993). By this mech-
anism, CRABP-I has been implicated in enhancing the
metabolism of RA to inactive metabolites (Fiorella and
Napoli, 1991) through a transfer of RA from CRABP-I to
CYP-isoenzymes via a bimolecular complex with juxta-
posed ligand portals (Thompson et al., 1995), whereas
CRABP-II may facilitate transport of RA to the nucleus

TABLE 3
The catabolism of retinoic acid to polar metabolites

Enzyme Locus Reaction Binding protein/function

Cytochrome P450-isoenzymes Microsomal
P450RAI Retinoic acid 3 4-OH-retinoic acid CRABP-retinoic acid/substrate
CYP1A1 Retinoic acid 3 4-OH-retinoic acid CRABP-retinoic acid/substrate
CYP1A2
CYP2B4
CYP2C3
CYP2E1, 2
CYP2G2
CYP3A
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(Donovan et al., 1995), suggesting that CRABP-II is
involved in the regulation of nuclear receptors by RA.
F9-cell mutants that overexpress CRABP-I show a much
faster RA metabolic activity than wild-type F9 cells, and
much higher RA concentrations are required to induce
differentiation (Boylan and Gudas, 1991).

Here it should be mentioned that 13-cis-RA is not
bound by CRABP-I/-II or other binding proteins in the
cytosol. Thus it penetrates the cell nucleus after topical
or systemic administration more rapidly than all-
trans-RA or 9-cis-RA, as demonstrated in a mouse em-
bryo model system, whereas the access of all-trans-RA to
the nucleus seems to be limited by its binding to
CRABP-I/-II (Nau and Elmazar, 1997). These findings
may explain the profound teratogenic effects caused by
13-cis-RA after topical or systemic treatment (Orfanos et
al., 1997). The kinetics of the nuclear penetration of RA
derivatives in human skin cells is currently under study
in our laboratory.

A significant decrease of CRABP-I mRNA expression
and an increased CRABP-II mRNA expression have
been reported in psoriatic skin (Siegenthaler et al.,
1990a, 1992a; Elder et al., 1992; Torma et al., 1994).
Moreover, the expression of CRBP-I mRNA also was
increased (Busch et al., 1992). Whether this altered ex-
pression of CRBP-I and CRABPs is an inherent charac-
teristic of psoriasis or simply reflects the fact that pso-
riatic epidermis contains a higher proportion of
undifferentiated keratinocytes is unknown.

CRABP-I expression was down-regulated in basal and
squamous cell carcinomas, whereas CRBP-I was ex-
pressed (Busch et al., 1992). Whether these findings are
relevant to the development of these skin tumors is not
known.

CRABP-I/II double knockout mice had no apparent
phenotype (Lampron et al., 1995), suggesting that these
binding proteins may not be essential for normal retin-
oid metabolism or signaling. Instead, it is possible that
these proteins sequester RA during vitamin A deficiency
to support the maintainance of retinoid signaling. How-
ever, retinoid binding proteins (CRBPs and CRABPs)
are involved in the regulation of intracellular retinoid
concentrations (tables 1–3) and display atypical pat-
terns in psoriasis and other hyperproliferative skin dis-
eases. To what extent the phenotype of these skin dis-
orders is caused by an inappropriate metabolism of
retinoids, and whether the atypical patterns of retinoid
binding proteins found are primary or secondary, re-
mains to be elucidated. Further investigation is under-
way to characterize the function of CRBPs and CRABPs
in healthy, psoriatic, and neoplastic skin.

V. Retinoid Catabolism

A. Retinoic Acid Metabolites

The cleavage of active retinoid ligands to inactive
metabolites is of great importance for the regulation of

nuclear retinoid receptors (fig. 5). Recently, the growth
inhibitory effects of RA have been shown to correlate
with the activity of RA metabolism (Takatsuka et al.,
1996). The enzyme mainly responsible for this reaction
is the CYP-dependent 4-hydroxylase that converts the
b-ionone ring of RA to 4-hydroxy-RA metabolites (4-OH-
RA) which are excreted much faster from the cells than
RA (Roberts et al., 1979; Williams and Napoli, 1985; Wes-
tin et al., 1993). The CYP dependence of this reaction has
been demonstrated in microsomes of rat skin (Van den
Bossche et al., 1988), rabbit (Roberts et al., 1992) and
human liver (Leo et al., 1989), human keratinocytes (Roos
et al., 1996), and human skin (Duell et al., 1994).

Interestingly, all-trans-, 9-cis-, and 13-cis-RA induce a
4-hydroxylase, which seems to metabolize only all-
trans-RA (Duell et al., 1994, 1996) in human skin. Con-
versely, 9-cis- and 13-cis-RA inhibited the 4-hydroxyla-
tion of all-trans-RA in human liver (Nadin and Murray,
1996). However, topical application of pharmacological
doses of all-trans-RA to human skin induces a 4.5-fold
increase in its metabolism to 4-OH-RA and other polar
metabolites (Duell et al., 1992). Our findings showing
that both 9-cis- and 13-cis-RA are isomerized to all-
trans-RA in human keratinocytes, in vitro, may explain
why topical application of these substances to human
skin induces all-trans-RA 4-hydroxylase, leading to an
increase in 4-OH-metabolites in epidermis regardless of
the isomer applied (Jugert et al., in press). In contrast,
human fibroblasts show no significant RA isomerization
activity regardless of the isomer (13-cis), 9-cis, and all-
trans-RA, respectively) applied. The major catalytic me-
tabolite identified in fibroblasts is 4-oxo-13-cis-RA, no
matter which RA isomer is added to the medium (un-
published results). Other studies have shown that mi-
crosomal preparations from mouse liver but not mouse
skin can 4-hydroxylate 13-cis-RA in an in vitro assay
system (Oldfield, 1990). In contrast, in cooperation with
R. Wyss (Roche Laboratories, Basel, Switzerland), we
found that RA 4-hydroxylase in liver and skin of Na-
tional Marine Research Institute mice is cytochrome
CYP 2E1 (CYP2E1) dependent. After induction of the
CYP2e1-specific para-nitrophenol hydroxylase by the
addition of ethanol to drinking water or the application
of ethanol to mouse skin, we observed a parallel increase
in p-nitrophenol hydroxylase activity and the amount of
4-hydroxylated RA metabolites, indicating that CYP2e1
is a major RA 4-hydroxylating enzyme in murine liver
and skin (Jugert et al., 1995, 1996a). An alternative
pathway of 13-cis-RA inactivation after topical applica-
tion has been proposed through absorption into the
bloodstream and transport to the liver for conversion to
4-OH-13-cis-RA by hepatic CYP2c8 (Leo et al., 1989).

4-oxo-all-trans-RA is the best characterized RA me-
tabolite. It is approximately half as active as all-
trans-RA in promoting cell differentiation in F9 embry-
onal carcinoma cell lines (Williams et al., 1992) and in
producing dysmorphogenic effects in rat embryonal tis-
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sue (Kraft et al., 1992). Likewise, 4-oxo-RA binds RARb
with an affinity similar to that of all-trans-RA (Pijnap-
pel et al., 1993), but binds poorly to RARg (Reddy et al.,
1992). 4-oxo-RA also binds to CRABP with an affinity
slightly lower than that of all-trans-RA in vitro (Fiorella
et al., 1993)

Our experiments have shown that the isomers 13-
cis-RA and all-trans-RA are predominantly inside the
keratinocytes, whereas their 4-OH- and 4-oxo-metabo-
lites are excreted rapidly from the cells, indicating that
these metabolites do not bind appreciably to receptors
(unpublished observations).

The formation of 4-oxo-RA from 4-OH-RA was shown
to require only NAD, whereas reduced NAD phosphate
was ineffective, which is inconsistent with the involve-
ment of CYP-isoenzymes (Allenby 1993). Wyss (personal
communication) observed that there are no differences
in the oxidizing activity of 4-OH-RA in cultured human
keratinocytes and fibroblasts compared with the tissue
culture medium, which suggests that 4-OH-RA is oxi-
dized spontaneously to 4-oxo-RA depending on the con-
centration of all-trans-RA added to the culture medium
and the induction/inhibition of the RA 4-hydroxylase.
Alternatively, the formation of 4-oxo-RA can result from
oxidation at the 2 or 3 position of the b-ionone-ring of
4-OH-RAL, catalyzed by a CYP1A2-mediated 4-oxida-
tion of all-trans-RAL and 9-cis-RAL, and not from RA, as
is assumed generally (Van Wauwe et al., 1994; Raner et
al., 1996). This could be an alternative pathway for
generation of 4-oxo-RA but would not completely explain
how RA is cleaved.

Another group of RA-metabolites, the retinoyl-b-glu-
curonides (all-trans-RAG, 13-cis-RAG, and 9-cis-RAG),
also may have retinoid receptor binding activity as dem-
onstrated in vivo and in vitro (Mehta et al., 1991; Olson
et al., 1992; Sass et al., 1994). Only traces of RA-glucu-
ronides are found in human tissues compared with ro-
dents (Sass et al., 1994). This species difference in glu-
curonidation could explain the high clearance of 13-
cis-RA in rodents compared with humans (Nau et al.,
1989; Nau, 1990).

The natural metabolite of RA, 5,6-epoxy-RA, is found
in intestinal mucosa, liver, and kidney of rat (Napoli and
McCormick, 1981). Although this metabolite inhibits the
promotion of skin tumors equipotent with RA (Verma et
al., 1980), it is converted to polar metabolites more rap-
idly than RA (Napoli et al., 1982). The specific enzyme
generating 5,6-epoxy-RA is unknown.

Using a Cat-reporter assay (Astrom et al., 1990) and
ED50 values for RXRa and RARg, a potency grading of
retinoid binding activity and receptor inducibility has
been evaluated with all-trans-RA . dd-RA . 4-oxo-
RA . 4-OH-RA . 5,6-epoxy-RA (Duell et al., 1992).
These metabolites produce epidermal thickening in
hairless mouse skin in a rank order similar to that
achieved with the Cat assay (Reynolds et al., 1993).

B. Cytochrome P450-Isoenzymes

Several isoenzymes of the cytochrome CYP superfam-
ily are involved specifically in the catabolism of retinoids
in rodent liver (Frolik et al., 1979; Roberts et al., 1979;
Leo et al., 1984; Martini and Murray, 1993; Raner et al.,
1996), trachea (Frolik et al., 1979), intestine (Roberts et
al., 1991), and skin (Leo et al., 1984; Van den Bossche et
al., 1988) (table 3).

White et al. (1996) reported the identification of RA-
inducible all-trans-RA 4-hydroxylase (CYPRAI), encod-
ing a new member of the cytochrome P450 supergene-
family in zebrafish. They found that this gene was
related closely to a human complementary deoxyribonu-
cleic acid (cDNA) isolated from a human fetal brain
library, suggesting that this novel CYP subfamily is
highly conserved in fish and humans, and identified the
cDNA representing this RA-inducible enzyme in various
human tissues as a novel family of the CYP superfamily,
named CYP26 (White et al., 1997). To what extent this
CYPRAI is involved in the regulation of retinoid signal-
ing in human skin cells is unknown.

Various cytochrome CYP-isoenzymes are involved in
the catabolism of RA in rodent and human tissues (table
3): In rabbit liver microsomes, cytochrome CYP-1a2
(CYP1A2) and 2B4 were most effective in metabolizing
RA to 4-OH-RA, whereas CYP2c3, 2E1, 2G2, and 2E2
were less effective, and CYP1A1 and 3A6 were ineffec-
tive (Roberts et al., 1991). In further studies, Roberts et
al. (1992) reported that the CYP1a2 shows high activi-
ties in both the 4-hydroxylation of RA and the oxidation
of RAL to RA, whereas CYP3A6 catalyzes only the lat-
ter, and the CYP2B4 catalyzes only the 4-hydroxylation
of RA.

Also in rabbit liver microsomes, Raner et al. (1995)
demonstrated that CYP1A1 and CYP1A2, to a lesser
extent, are the most active enzymes in the conversion of
all-trans-RAL, 9-cis-RAL, and 13-cis-RAL to their corre-
sponding RA isomers. This indicates that CYP1A1 and
CYP1A2, to a lesser extent, are more involved in activa-
tion than in catalytic oxidation of retinoids. The kcat/Km

value for 4-hydroxylation of all-trans- and 13-cis-RAL by
CYP1A1 is identical with that for all-trans-RA and 13-
cis-RA formation, suggesting a dual role for this cyto-
chrome in the oxidation of all-trans-RAL and all-trans-
RA.

In human liver, a member of the CYP2C family was
reported to catalyze the 4-hydroxylation of RA (Leo et
al., 1989; Duell et al., 1992), whereas studies with CYP-
inhibiting immunoglobulin G antibodies in rat liver re-
vealed that the CYP3A subfamily is involved in this
process but can not be considered the “principal RA
4-hydroxylase” (Martini and Murray, 1993).

Isoenzymes of CYP families 2, 3 (Van Pelt et al., 1990),
and 4 (Uchida et al., 1997) were shown to be present in
human epidermal foreskin keratinocytes. The role of
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these enzyme families especially with regard to retinoid
metabolism is unknown.

Cultured human keratinocytes have been shown to
contain CYP1A1 (Berghard et al., 1990) and the 4-hy-
droxylation of RA increases because of induction of
CYP1A1 by 3-methylcholantrene (Van den Bossche and
Willemsens, 1991; Edes et al., 1991), whereas RA inhib-
ited the catalytic activity of CYP1A1 in human skin (Li
et al., 1995), indicating the involvement of CYP1A1 in
4-hydroxylation of RA in this tissue.

The principal RA 4-hydroxylase for the catabolism of
RA in human skin is still unknown. Whether it is the
4-hydroxylase described by White et al. (1996, 1997)
remains to be proved. Further, it would be interesting to
determine whether the basal and inducible activity of
this enzyme is altered in skin diseases where RA treat-
ment is effective (e.g., psoriasis, squamous cell carci-
noma, Darier’s disease, acne, solar keratosis). In the
skin of patients suffering from such diseases, it also
would be very interesting to evaluate which xenobiotics
induce/inhibit the activity of this CYP-isoenzyme and
how this affects the clinical appearance of retinoid-sen-
sitive skin diseases.

Because a range of CYP-isoenzymes seem to possess
some capacity to 4-hydroxylate retinoids, attempts to
isolate the principal RA 4-hydroxylase on the basis of
CYP-isoenzyme activity should be conducted carefully.

The extent to which RARs and RXRs are involved in
the regulation of retinoid-metabolizing enzyme activity
in human skin is unknown and currently is being stud-
ied using dominant negative mutants of several RARs
and RXRs.

VI. Modulation of Retinoid Metabolism:
Pharmacological Interactions

A. Retinoids and Skin Malignancies

Actinic keratoses were the first skin lesions to be
treated topically with all-trans-RA (Stüttgen, 1962). In
various clinical trials, retinoids have been shown to be
active in chemoprevention and treatment or prevention
of skin malignancies (Verma, 1987; Hong et al., 1990;
Crowe et al., 1991; Hu et al., 1991; Houle et al., 1991;
Jones et al., 1992; Moon and Mehta, 1990; Bertram,
1993; Reynolds et al., 1993; De Luca et al., 1993; Lotan et
al., 1995; Craven and Griffiths, 1996; Agarwal et al.,
1996). These effects are assumed to relate to RAR-me-
diated antipromoting (Hill and Grubbs, 1992) and anti-
initiating effects. The latter seems to be influenced by
interference of several xenobiotics with different steps of
the metabolism of retinoids in liver and skin microsomes
(Verma, 1992; De Luca et al., 1994).

Some well known skin procarcinogens, such as
3-methylcholantrene (Kinoshita and Gelboin, 1972; Van
den Bossche and Willemsens, 1988, 1991) and the poly-
cyclic aromatic hydrocarbon benzo[a]pyrene (Falk et al.,
1964; Van den Bossche and Willemsens, 1991; Davies,

1967; Bickers and Kappas, 1978; Edes et al., 1991), can
increase RA catabolism in human skin and induce local
tissue depletion of retinoids, respectively (Edes et al.,
1991). This can be antagonized by high dietary intake of
b-carotene (Edes et al., 1991) or RA (Li et al., 1995). This
acceleration of retinoid cleavage primarily is caused by
the xenobiotic-mediated induction of CYP1A1, which
also is involved in the inactivation of RA to 4-OH-RA
(Van den Bossche and Willemsens, 1991; Edes et al.,
1991; Kizaki et al., 1996). Accordingly, retinoid-induced
inhibition of basal as well as coal tar- and glucocorticoid-
induced CYP1A1 expression in human skin, as reported
by Li et al. (1995), seems to reflect a competitive feed-
back-inhibition of CYP1A1 activity by RA.

CYP1A1 is one major enzyme that converts the pro-
carcinogens mentioned above into active carcinogenic
metabolites in skin (Bickers and Kappas, 1978). The
induction of this enzyme, leading to an acceleration of
the turnover of RA to inactive metabolites and a local RA
deficiency, might explain further the profound effect of
these carcinogenic CYP1A1-inducers on cell prolifera-
tion and tumor formation. In support of this notion,
7,8-benzoflavone, an inhibitor of CYP1A1 activity, in-
creases local vitamin A concentrations and reduces tu-
mor formation in mouse skin (Gelboin et al., 1970). To
what extent the procarcinogenic effects of these sub-
stances are caused by their induction of CYP-mediated
depletion of retinoid levels in the skin, and which CYP-
isoenzyme besides CYP1A1, especially the CYPRAI
(White et al., 1996, 1997), are involved is unknown.
However, the capacity of RA to down-regulate basal as
well as inducible CYP1A1 expression indicates that reti-
noids also have, besides their well known antipromoting
potential, an anti-initiating potential by suppressing
CYP1A-dependent procarcinogen activation and subse-
quent tumor formation in target tissues. This down-
regulation may be mediated through a retinoid-respon-
sive element in the promoter region of the human
CYP1A1 gene (Vecchini et al., 1994).

RA suppresses the expression of the aryl hydrocarbon
receptor (AhR) in high calcium transformed cells (Wan-
ner et al., 1996). To what extent this RA-mediated re-
ceptor modulation is of importance for the differentia-
tion of epidermal keratinocytes is not known but
suggests that RA is able to influence AhR, the main
regulatory element of the procarcinogen-activating en-
zyme CYP1A1.

The imidazole antimycotics, ketoconazole, clotrim-
azole, and miconazole are all well known inhibitors of
various cytochrome P450-isoenzymes, affecting also the
metabolism of retinoids. They first were shown to inhibit
the metabolism of RA in F9 embryonal carcinoma cells
(Williams and Napoli, 1987). When tested in vitro, liara-
zole, a potent CYP inhibitor (Van Wauwe et al., 1993),
suppressed neoplastic transformation and up-regulated
gap junctional communication in murine and human
fibroblasts (Acevedo and Bertram, 1995), which appar-
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ently was caused by the presence of retinoids in the
serum component of the cell culture medium (Rogers et
al., 1990; Zhang et al., 1992). Furthermore, liarazole
magnified the cancer chemopreventive activity of RA
and b-carotene in these experiments by inhibiting RA
catabolism as demonstrated by absence of a decrease in
RA levels in the culture medium in the presence of
liarazole during 48 hours, whereas without liarazole
99% of RA was catabolized. In vivo treatment with li-
arazole and ketoconazole reduced the accelerated catab-
olism of retinoids and increased the mean plasma all-
trans-RA concentration in patients with acute
promyelocytic leukemia and other cancers (Rigas et al.,
1993).

The use of low-dose all-trans-RA in tandem with li-
arazole may enhance therapeutic retinoid levels in tar-
get tissues by inhibiting RA catabolism. Retinoid catab-
olism is induced after long-term all-trans-RA treatment
(Lefebvre et al., 1991; Muindi et al., 1992) leading to
RA-resistant disease (Warrell et al., 1993).

B. Retinoid Resistance

Two possible explanations for accelerated clearance of
retinoids in patients during long-term treatment with
retinoids have been suggested (Kizaki et al., 1996).

First, RA-mediated induction of CRABP expression,
which lowers the plasma and intracellular levels of ac-
tive RA by binding RA (see Section IV.B.), and second,
the RA-mediated induction and/or constitutive overex-
pression of P-glycoprotein, which is encoded by the mul-
tidrug resistance gene (MDR1), leading to decreased
intracellular levels of RA by enhancing active transport
of intracellular retinoids out of the target cells (Hamana
and Tsuruo, 1986; Chen et al., 1986; Delva et al., 1993).

The RARb2 seems to be of great importance for the
retinoid-mediated regulation of epithelial cell growth
and differentiation, tumor formation, and the aging pro-
cess (Houle et al., 1991, 1993; Gebert et al., 1991; Chen
et al., 1995b; Lee et al., 1995; Lotan et al., 1995; Si et al.,
1996; Bartsch et al., 1992, 1996). Because it is the most
tightly RA-regulated retinoid receptor (Kato et al.,
1992), RARb2 appears to be essential for pathological
tissue alterations in vitamin A deficiency. Whereas vi-
tamin A deficiency causes no significant changes in the
expression levels of RARa and RARg mRNAs, the level
of RARb transcripts is decreased greatly in various tis-
sues of vitamin A-deficient rats and is rapidly inducible
by administration of RA (Kato et al., 1992). These find-
ings may indicate that a xenobiotic-driven depletion of
retinoids favors the formation of dysplastic tissue for-
mation or even malignant cell growth through the de-
pletion of the RARb2 activity. Because the regulation of
the RARb2 in epithelial tissue depends primarily on the
expression of other retinoid receptors, especially RARa
(Schon and Rheinwald, 1996; Geisen et al., 1997), the
possible effects of RARb2 depletion on cell growth and
differentiation is difficult to analyze separately from the

context of expression patterns of other retinoid receptors
or other transcription factors (e.g., AP1).

In addition, vitamin D3 and retinoids can inhibit syn-
ergistically the growth and progression of squamous cell
carcinomas and actinic keratoses in chronically sun-
exposed skin (Majewski et al., 1997). One reason for this
synergism may be the direct influence of vitamin D3 on
the isomerization and the metabolism of RA, which we
observed in human keratinocytes (Jugert et al., 1997).
Here, vitamin D3 inhibits the isomerization of 13-cis-RA
to the more receptor active all-trans and 9-cis-isomers.
Moreover, we found that the vitamin D3 derivative seco-
cholestra-trien-1,3,24-triol (tacalcitol), used for the treat-
ment of severe keratinizing disorders, significantly inhib-
its 4-hydroxylation of all-trans-RA (Jugert et al., 1998).

Further investigations are underway to elucidate
these mechanisms in the control of retinoid levels in
retinoid-responsive malignant skin diseases.

C. Retinoids and Disorders of Keratinization

The use of topical and oral retinoids for the treatment
of disorders of keratinization, such as psoriasis and
Darier’s disease, has been established (Orfanos et al.,
1972, 1973, 1987; Runne et al., 1973; Peck et al., 1978;
Happle et al., 1987; Blanchet-Bardon et al., 1991). Sys-
temic retinoid therapy often is combined with topical
drugs such as corticosteroids, dithranol, tar, and also
ultraviolet A/ultraviolet B phototherapies, in which syn-
ergistic effects have been reported (Orfanos et al., 1997).

Ethanol treatment of rats results in enhanced micro-
somal catabolism of all-trans-RA to 4-OH-RA and 4-oxo-
RA (50%, P , 0.01) accompanied by increased microso-
mal CYP concentrations (34%, p , 0.005) (Sato and
Lieber, 1982). This induction in turn significantly de-
creased the storage of ROL in the liver in baboons and
rats (Sato and Lieber, 1981). One potential target of
ethanol action may be CYP2E1, which oxidizes ethanol
(Ohnishi and Lieber, 1977) and 4-hydroxylates retinoids
(Roberts et al., 1991).

Ethanol also inhibits ADH-catalyzed ROL oxidation
in vitro (Julià et al., 1986), and ethanol treatment of
mouse embryos has been demonstrated to reduce endog-
enous RA levels (Deltour et al., 1996). The inhibition of
cytosolic RolDH activity and stimulation of microsomal
RolDH activity could explain ethanol-mediated vitamin
A depletion, apart from ADH-isoenzymes (Napoli, 1996).
Although the exact mechanism of inhibition of retinoid
metabolism by ethanol is unclear, these observations are
consistent with the finding that patients with alcoholic
liver disease have depleted hepatic vitamin A reserves
(Leo and Lieber, 1982).

In addition to its influence on psoriasis by inhibition of
RA synthesis, ethanol may exert its effects in fetal alco-
hol syndrome by the same mechanism, because the class
IV ADH was found to play a crucial role leading to
reduced RA levels after ethanol treatment in cultured
mouse embryos (Deltour et al., 1996). Ethanol occasion-
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ally provokes acute exacerbations of psoriasis (Poiko-
lainen et al., 1990; Frank and Lentner, 1996). Because
retinoids have been very beneficial in the treatment of
psoriasis, an ethanol-induced decrease of intracellular
ROL and RA could be one explanation for this acute
worsening of psoriasis.

Liarazole has been demonstrated to be an active an-
tipsoriatic drug (Dockx et al., 1995; De Doncker et al.,
1991). By suppressing the CYP-mediated 4-hydroxyla-
tion of RA to 4-OH-RA, liarazole increases serum levels
of RA from nearly undetectable levels to 2.9 6 1 ng/ml
serum, which enhances the action of RA in cellular dif-
ferentiation (Van Wauwe et al., 1994). Because liarazole
is 2 to 15 times more potent than clotrimazole, micon-
azole, and metyrapone in inhibiting RA metabolism, it
has been used successfully for the treatment of psoriasis
(Dockx et al., 1995).

To what extent imbalances in retinoid metabolism are
responsible for the pathogenesis of psoriasis and other
keratinizing disorders, and which steps of this metabolic
pathway are affected, is unknown. The mechanisms of
the effect of retinoid therapy in other keratinizing dis-
orders [e.g., icthyosis, Darier’s disease, palmoplantar
keratodermas, and pityriasis rubra pilaris (Borok and
Lowe, 1990; Peck and Yoder, 1976; Happle et al., 1987]
are unknown. Also, it is possible that the effectiveness of
systemic and topical retinoids in acne could be influ-
enced by the concomitant administration of liarazole.

D. Other Modulators of Retinoid Metabolism

The corticosteroid dexamethasone, the macrolide an-
tibiotic triacetyloleandomycin, and phenobarbital are all
well established inducers of the CYP3A subfamily (Wax-
man et al., 1985; Wrighton et al., 1985; Hostetler et al.,
1987; Jugert et al., 1994) and can increase microsomal
4-hydroxylation of RA in rat liver (Martini et al., 1993).
Whether the CYP3A subfamily and its modulation by
xenobiotics is important for retinoid metabolism in hu-
man skin remains to be clarified. However, CYP3A
mRNA is strongly inducible in human hepatocytes with
retinoid treatment in vitro (Jurima-Romet et al., 1997).

Glucocorticoids (clobetasol) also induce the expression
of CYP1A1 in human skin (Li et al., 1995). This is me-
diated through glucocorticoid receptor responsive ele-
ments that have been identified in the first intron of the
rat and human CYP1A1 genes (Hines et al., 1988). These
findings suggest the possibility that skin changes caused
by long-term treatment with topical or systemic glu-
cocorticoids could be mediated by a steroid-induced de-
pletion of active retinoids. Therefore, we hypothesize
that tandem treatment of patients with both glucocorti-
coids and low-dose RA may prevent some steroid side
effects. This idea already has been confirmed in a mouse
model (Schwarz et al., 1994). Retinoids may have a ste-
roid-sparing effect (Orfanos et al., 1997). Investigation is
underway to test whether this is related to corticoste-

roid-induced inhibition of CRABP-II expression (Piletta
et al., 1994).

Studies on ADH inhibitors have revealed further evi-
dence that this enzyme functions in ROL oxidation for
RA synthesis. The ADH inhibitor 4-methylpyrazole can
inhibit the conversion of ROL to RA in mouse embryos in
vivo (Collins et al., 1992), whereas microsomal ROL de-
hydrogenases (SDHs) are not inhibited by 4-methylpyra-
zole (Chai et al., 1995).

Exogenous fatty acids may be another remarkable
way to alter the metabolism of active retinoids in cul-
tured human epidermal keratinocytes. Randolph and
Simon (1995) demonstrated that unsaturated 16- and
18-carbon fatty acids exert the following effects on in-
tracellular retinoid metabolism: The total cell retinoid
mass increases up to 50% because of RE accumulation
corresponding to the added fatty acid, whereas the uti-
lization of endogenous RE decreased up to 80%. Further-
more, the steady-state cellular concentrations of ROL,
3,4-didehydro-ROL, and their respective carboxylic ac-
ids decreased up to 80%, whereas the RA metabolism
was not altered.

VII. Conclusions and Perspectives

A. Retinoid-Drug Combinations in Dermatologic
Therapy

A broad spectrum of drugs is used in combination with
retinoids for the treatment of dermatological disorders
to enhance the efficacy of either agent. Especially in the
treatment of psoriasis, several strategies have been de-
veloped whereby retinoids are combined with other
agents such as selective ultraviolet irradiation, ultravi-
olet A irradiation with concomitant psoralen treatment,
cyclosporin, vitamin D3-derivatives, azole derivatives,
urea, tar, salicylic acid, and dithranol (Gollnick, 1996;
Orfanos et al., 1997).

These regimens additively or synergistically may
modulate the disease process and also provide opportu-
nities to alter the regimens, especially during long-term
treatment to decrease drug toxicities or to enhance effi-
cacy. At least three types of combination strategies for
retinoid-drug combinations in dermatological therapy
can be described.

First, combinations of drugs displaying distinct effects
on cell proliferation/differentiation and immunomodula-
tion (e.g., retinoids and chemotherapy in advanced cu-
taneous T-cell lymphoma (Gollnick et al., 1981; Thes-
trup-Petersen et al., 1988)).

Second, a combination of retinoids with ultraviolet A
or B radiation (and other drugs). For example, ultravi-
olet A irradiation with concomitant retinoid and psor-
alen treatment therapy (and psoralen and ultraviolet A
combination) is currently one of the most effective regi-
mens for recalcitrant severe psoriasis (Saurat et al.,
1988; Tanew et al., 1991).
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Third, drugs with metabolic interactions that can en-
hance the half-life of active compounds. An example of
this regimen is the interaction between azole (Kato et
al., 1992; Van Wauwe et al., 1993; Dockxs et al., 1995;
Majewski et al., 1997) and vitamin D derivatives
(Gollnick, 1996; Jugert et al., 1997) that inhibit the
metabolism of retinoids in skin cells leading to increased
intracellular amounts of active RA isomers. Further
study and the identification of novel interactions of this
type of drug interaction is of great clinical interest be-
cause they may decrease the dose of retinoids required
for efficacy, thereby also reducing the risk of side effects
of the retinoids.

The complexity of the metabolic pathways for retin-
oids and the likelihood that these are altered by diseases
affecting the skin suggest that such novel strategies will
be forthcoming. Multiple studies are underway to define
the steps of retinoid metabolism where the use of mod-
ulating drugs might influence the results of dermatolog-
ical therapy thereby leading to the most profound effects
with regard to the clinical outcome.

B. Retinoid Receptor Agonists/Antagonists

Synthetic retinoid receptor-selective agonists/antago-
nists offer another new approach. This concept of drug
development is based on the findings that retinoid re-
ceptors (RARs and RXRs) can target different genes
depending on the activated retinoid receptor complexes
in human skin (Fisher and Voorhees, 1996, 1996). The
multiplicity of these retinoid signaling pathways affords
potential for therapeutic opportunity as well as unde-
sired side effects associated with retinoid therapy. It is
possible that the indiscriminate activation of all path-
ways by nonspecific retinoid ligands could lead to unac-
ceptable side effects so that any enhanced efficacy would
be obtained at the cost of enhanced toxicity. The devel-
opment of ligands selective for individual receptor sub-
types relevant to a targeted disease could decrease these
toxic effects and thereby improve the therapeutic index.
Two new arotinoids are now available for topical use in
skin diseases. These are tazarotenic acid (tazarotene)
and 6-[3-(1-adamantyl)]-4-methoxyphenyl-2-naphtoic
acid (adapalene) (fig. 2); other synthetic retinoid deriv-
atives are being developed (Klein et al., 1996; Duvic et
al., 1997).

The first of these synthetic receptor-selective ligands
available for topical treatment of psoriasis is tazarotene
(fig. 2), an acetylenic third-generation retinoid deriva-
tive (Esgleyes-Ribot et al., 1994). It is a poorly absorbed,
nonisomerizable arotinoid, which is metabolized rapidly
to its free carboxylic acid, tazarotenic acid, binding with
high affinity to RARs, with the rank order of affinity
being RARb . RARg .. RARa (Nagpal et al., 1995). It
does not bind to any of the RXRs. This retinoid deriva-
tive is said to have lower cytotoxic effects than other
retinoids, but it achieves sustained therapeutic efficacy

in the treatment of plaque-type psoriasis (Chan-
draratna, 1996; Weinstein, 1996).

The second synthetic receptor-selective retinoid li-
gand is adapalene (fig. 2), a new highly stable naphtoic
acid arotinoid with lipophilic properties. It does not bind
to CRABP, although it enhances its synthesis, and its
rank order of retinoid receptor affinity appears to be
RARb . RARg .. RARa (Bernard, 1993; Griffith et al.,
1993; Shalita et al., 1996).

Future generations of such receptor subtype-selective
retinoids may provide clinicians with more specific and
less toxic drugs for dermatological therapy. These aroti-
noids, which first were introduced for the treatment of
skin diseases, also may have potential as anticancer
drugs (Tsambaos and Orfanos, 1982, 1983; Dreno, 1993;
Orfanos et al., 1997; Duvic et al., 1997).

C. Future Directions

The steadily increasing knowledge concerning ligand-
receptor interaction and the metabolism and molecular
actions of retinoids portends new approaches for man-
aging dermatological diseases through pharmacological
modulation of the retinoid metabolic pathway. The fu-
ture of retinoid therapy of these disorders seems to be
moving in two directions.

First, the development of drugs that modulate retin-
oid metabolism by interacting with retinoid-metaboliz-
ing enzymes and/or binding proteins, and second, more
retinoid receptor subtype-specific synthetic retinoid de-
rivatives.

Drugs from the first category may permit reduction of
the amount of the agent administered, thereby increas-
ing therapeutic benefit and reducing the toxic side ef-
fects of treatment. The efficacy of the azole derivative
liarazole as an inhibitor of RA 4-hydroxylase for the
treatment of psoriasis in combination with RA demon-
strates the usefulness of this approach. Investigation is
underway to evaluate the clinical significance of our in
vitro findings of increased intracellular RA levels after
treatment with vitamin D3 or its synthetic derivative
tacalcitol (Jugert et al., 1997).

It is important to emphasize that retinoids are also
very effective drugs for preventing or treating cancer
(Lippman et al., 1997), especially skin malignancies,
which present the most frequent type of human cancer
(Khuri et al., 1997). New retinoid regimens could lead to
innovative therapy options in cutaneous cancers.

Drugs from the second category are selective retinoid
receptor agonists/antagonists. As discussed above, they
could offer more specific approaches by targeting specific
retinoid receptors uniquely relevant for the treatment of
specific skin disorders. Furthermore, this approach
could reduce the occurrence of retinoid side effects.

The experimental systems used for study are crucial
for defining retinoid action in the skin. For example,
retinoids were reported to display effects in cultured
keratinocytes that were opposite to those in vivo (for
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review see Fisher and Voorhees, 1996). Monolayer in
vitro systems exhibit responses to retinoid treatment
that differ from the in vivo situation. Using keratino-
cytes grown on a dermal substrate without direct con-
tact with culture medium has helped to solve this di-
lemma (Asselineau, 1989).

The knowledge concerning the molecular action of
retinoids in the skin has increased dramatically, but the
majority of steps of retinoid metabolism especially reti-
noid inactivation still are not fully understood. The in-
teraction of retinoids as the central agent with other
drugs represents a new dimension of dermatological
therapy providing us with more specific and less toxic
therapy approaches to influence cell proliferation and
differentiation. Perhaps in no other area of pharmacol-
ogy is the concept of using drug-drug interactions as a
rationale for therapy more advanced than with retinoids
in dermatology. It is likely that this strategy will prove
useful in other areas as well.
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